不安を解消する中学受験パートナー・西湘レーラーのブログ

[中学受験]面積図の作り方は絵描き歌[つるかめ算・速さのつるかめ算編]

2019/10/13
 
この記事を書いている人 - WRITER -

面積図については、以前二つの記事を書きました。


今回は、つるかめ算編です。

つるかめ算の応用である、速さのつるかめ算も扱います。

つるかめ算

まずは、つるかめ算について述べていきます。

なぜ面積図を使えるか

まずは、以下の問題を考えましょう。

鶴と亀が合わせて10匹います。

足の数は全部で32本です。

鶴は何匹いるでしょうか。

本来は、亀は「匹」、鶴は「羽」で数えます。

以下では、便宜上、単位を「匹」に統一させていただきます

鶴であったとしても、亀であったとしても、以下のような関係が成り立ちます。

匹数×1匹あたりの足の本数=合計の足の本数

掛け算の式ですね。

このように、 掛け算の式で表すことができるものに、面積図を使うことができるのは、以前の記事でも述べました。

つるかめ算でも面積図を作ることができるのが分かります。

面積図を用いる理由も、これまでと同じです。

面積図を書くことで、自然に解答に近づけます。

面積図の書き方

つるかめ算の面積図は、平均や食塩水とやや異なる部分があります。

しかし、絵描き歌のように書き進めるのは同じです。

問題文を区切りながら、区切ったところまでを図示していくということです。

そうすることで、問題文を読み終わった時点で、自然に面積図が完成します。

鶴と亀が

これだけで図を少し書くことができます。

これが、平均や食塩水とやや異なることです。

問題文には書かれていませんが、鶴の足は2本、亀の足は4本と決まっています

問題文には書かれていませんので、特に初めて学習する場合は注意が必要です。

つるかめ算の面積図の書き方1

このような図ができます。

問題文で、合わせて10匹と分かっていますから、匹数を横にします

すると、足の本数が高さになります。

縦と横を逆にすると、面積図を活用できませんので、注意が必要です。

なお、横の長さ、つまりそれぞれの匹数は分かっていませんから、長さは適当で構いません。

合わせて10匹います。

つるかめ算の面積図の書き方2

匹数は横の長さです。

そして、合計の匹数が分かっていますから、全体の横の長さに書きます。

足の数は全部で32本です。

つるかめ算の面積図の書き方3

匹数×1匹あたりの足の本数=合計の足の本数という関係 でしたね。

合計の足の本数は、積です。

「縦×横=面積」における、「面積」に当たります

合計の足の本数は、面積図の「面積」として記入することになります。

面積ということが分かれば問題ないので、中央付近に書いておきましょう。

鶴は何匹いるでしょうか。

つるかめ算の面積図

亀の匹数が問われているので、高さが2本の長方形の横の長さを□にします。

お気づきでしょうか。

「10匹」と書かれていた場所が、少し下にずれましたね。

「□匹」と書くスペースが足りなかったので、下げました。

このように、書く場所がなかったら、途中で消しゴムで消して一部修正しても構いません。

最初から完成形を思い描こうとすると、ややこしくなります。

なお、面積図を用いない場合の解き方については、以下の記事にまとめてあります。もし興味があれば、お読みください。

速さのつるかめ算

つるかめ算の応用として、速さのつるかめ算というのがあります。

先ほどのつるかめ算は、そこまで難しくありません。

しっかり練習すれば、できるようになる子が多いです。

しかし、速さのつるかめ算になると、全く歯が立たない子も珍しくありません。

なぜ面積図を使えるか

速さのつるかめ算とは、以下のような問題です。

時速2kmと時速4kmで合わせて10時間歩きました。

全部で32km進みました。

時速2kmで何時間歩いたでしょうか。

このような問題を初めて見たとき、多くの小学生はつるかめ算だとすぐには気付きません。

では、なぜこれがつるかめ算であり、なぜ面積図を使えるのでしょうか。

速さには、以下のような関係があります。

速さ×時間=道のり

掛け算の形になっていますから、面積図を使うことができます

そして、つるかめ算では、一般的に以下の数量が問題文によって与えられています。

  • 単位あたりの数量
  • 合計の単位数
  • 合計の数量

抽象的で少し分かりにくいですね。

先ほどの例であれば、鶴の2本、亀の4本が単位当たりの数量です。

鶴も亀も、「1匹」につき2本や4本ですから、匹数の合計である「10匹」が合計の単位数です。

2本や4本が合わさって全部で32本あるので、これが合計の数量です。

では速さの例ではどうでしょうか。

時速とは、1時間あたりに進む道のりのことです。

つまり、時速2kmや時速4kmは、単位当たりの数量にあたります。

時速は、「 1時間あたり 」ですから、これの合計である「10時間」が合計の単位数です。

時速2kmや時速4kmが合わさって全部で32km進むので、これが合計の数量です。

このように説明しても分かりやすいですよね。

問題文を見て、つるかめ算だと気付くのは難しいということです。

もちろん慣れてくれば、同じような問題に何度も出会いますから、すぐに気づくでしょう。

しかし、慣れるまでは難しいです。

つるかめ算なのかどうかと悩むより、とにかく面積図を書いてみることが重要です

面積図を書くことができれば、 自然に解答に近づけます。

そして、終わってみたら、「つるかめ算だったのか」と気づくでしょう。

それで構いません。

大事なのは、手を動かすことです

もちろん、面積図以外の解き方もありますから、その場合は話は別になります。

面積図の書き方

では、実際にどのように手を動かすか説明していきます。

普通のつるかめ算と同じように書いていきます。

時速2kmと時速4kmで

速さにおける掛け算の関係は「速さ×時間=道のり」です。

長方形の面積においては、「縦×横=面積」です。

掛け算の前後は入れ替えることができます。

作図のは、「速さが縦、時間が横」、「速さが横、時間がたて」の二通りです。

問題で、合わせて10時間と分かっています。

長方形を二つ並べると、横の長さの合計を図示できます

そこで、時間が横、速さが高さになります。

ここでも、縦と横を逆にすると、面積図を活用できませんので、注意が必要です。

速さのつるかめ算の面積図の書き方1

このような図ができます。

先ほどとほぼ同じですね。

単位はややこしいので省略しました。

合わせて10時間歩きました。

速さのつるかめ算の面積図の書き方2

時間の合計が10時間ですから、全体の横の長さに書きます。

全部で32km進みました。

速さのつるかめ算の面積図の書き方3

速さ×時間=道のり」 ですから、道のりは積です。

縦×横=面積」 における面積にあたるので、面積として32kmを書きます。

時速2kmで何時間歩いたでしょうか。

速さのつるかめ算の面積図

時速2kmの時間が問われているので、高さが2の長方形の横の長さを□にします。

これで面積図ができました。

速さのつるかめ算であっても、普通のつるかめ算であっても、同じような図が出来上がります。

まとめ

普通のつるかめ算は解ける小学生が多いです。

しかし、速さのつるかめ算になると、解けなくなる小学生も多いです。

速さであっても、つるかめ算であれば同じような図ができるので、同じように解けます。

速さ以外にも、仕事算のつるかめ算など、特殊算を組み合わせることで、一見複雑な問題があります。

「○○のつるかめ算」は、つるかめ算の一種ですから、すべて同じような面積図ができます

問題文を読んで「つるかめ算だ」と思った場合は問題ありません。

ところが、つるかめ算だと分からないことも多いので、とにかく手を動かしましょう

手を動かしていくと、結果としてつるかめ算だとの面積図が出来上がります。

解き方の見通しを立てることも大事ですが、見通しが立たなくても手を動かすことも大事です。

もちろんつるかめ算には面積図を用いない解き方もあります。

面積図は一つの方法にすぎませんから、他の方法が得意なら、面積図を用いる必要はありません。

お読みいただき、ありがとうございます。

「購読する」ボタンからPUSH通知を受け取ることができます。


中学受験のことでお悩みでしたらブログやメールでお答えします。
基本的に24時間以内に回答いたします。
お気軽にご質問ください。

  5mail

 
ブログランキング参加中です。
クリックしていただけると、励みになります。

中学校受験ランキング
にほんブログ村 受験ブログ 中学受験情報へ
にほんブログ村

TwitterのDMなどでもご質問を受け付けています。フォローしていただけると幸いです。
5mail

 

お問い合わせは以下のフォームもご利用ください。

「合格だけでは、満足できない」 西湘レーラー

    この記事を書いている人 - WRITER -

    - Comments -

    メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

    CAPTCHA


    Copyright© 中学受験クルージング , 2019 All Rights Reserved.